Como calcular uma previsão da demanda acima usando uma média móvel de 3 e 5 períodos


Moving Average Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Um avanço em movimento é usado para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Observação: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais próximas as médias móveis são para os pontos de dados reais. Você gosta deste site gratuito Por favor, compartilhe esta página em GoogleWeighted Métodos de previsão de média móvel: Prós e contras Comentários Oi, adore o seu post. Estava me perguntando se você poderia elaborar mais. Usamos SAP. Nele há uma seleção que você pode escolher antes de executar sua previsão chamada de inicialização. Se você marcar essa opção, você obterá um resultado de previsão, se você executar a previsão novamente, no mesmo período e não verificar a inicialização, o resultado será alterado. Eu não consigo descobrir o que a inicialização está fazendo. Quero dizer, matemática. Qual o resultado da previsão é melhor para salvar e usar, por exemplo. As mudanças entre os dois não estão na quantidade prevista, mas no MAD e erro, estoque de segurança e quantidades ROP. Não tenho certeza se você usa o SAP. Oi obrigado por explicar tão eficientemente seu gd demais. Obrigado novamente Jaspreet Deixe uma resposta Cancelar resposta Mais Popular Posts Sobre Pete Abilla Pete Abilla é o fundador da Shmula. Ele ajuda empresas como a Amazon, Zappos, eBay, Backcountry e outros a reduzir custos e melhorar a experiência do cliente. Ele faz isso através de um método sistemático para a identificação de pontos de dor que afetam o cliente e os negócios e incentiva a ampla participação dos associados da empresa para melhorar seus próprios processos. TagsFORECASTING Fator Sazonal - a porcentagem da demanda média trimestral que ocorre em cada trimestre. Previsão anual para o ano 4 é de 400 unidades. A previsão média por trimestre é de 400/4 100 unidades. Previsão Trimestral Previsão do fator sazonal. Os métodos de previsão causal são baseados em uma relação conhecida ou percebida entre o fator a ser previsto e outros fatores externos ou internos. 1. regressão: a equação matemática relaciona uma variável dependente com uma ou mais variáveis ​​independentes que se acredita influenciar a variável dependente 3. modelos econométricos: sistema de equações de regressão interdependentes que descrevem algum setor da atividade econômica. 3. modelos de insumo-produto: descreve os fluxos de um setor da economia para outro e assim prevê os insumos necessários para produzir resultados em outro setor 4. Modelagem de simulação MEDIÇÃO DE ERROS DE PREVISÃO Há dois aspectos dos erros de previsão a se preocupar - Bias e Precisão Bias - Uma previsão é tendenciosa se errar mais em uma direção do que na outra - O método tende a sub-previsões ou sobre-previsões. Precisão - Previsão de precisão refere-se à distância das previsões de demanda real ignorar a direção desse erro. Exemplo: Para seis períodos, as projeções ea demanda real foram monitoradas. A tabela a seguir apresenta a demanda real Dt ea demanda prevista Ft para seis períodos: soma cumulativa de erros de previsão (CFE) -20 desvio absoluto médio (MAD) 170/6 28,33 média (MAPE) 83,4 / 6 13,9 Que informação cada previsão tem uma tendência a superestimar o erro médio da demanda por previsão foi de 28,33 unidades (MSE) 5150/6 858,33 desvio padrão dos erros de previsão 5150 / , Ou 13,9 da distribuição de amostragem de demanda real de erros de previsão tem desvio padrão de 29,3 unidades. CRITÉRIOS PARA A SELECÇÃO DE UM MÉTODO DE PREVISÃO Objetivos: 1. Maximizar a Precisão e 2. Minimizar as Regras Potenciais de Bias para selecionar um método de previsão de séries temporais. Selecione o método que fornece o menor viés, medido pelo erro de previsão cumulativo (CFE) ou dá o menor desvio absoluto médio (MAD) ou dá o menor sinal de rastreamento ou suporta gerências crenças sobre o padrão subjacente da demanda ou outros. Parece óbvio que alguma medida de exatidão e viés deve ser usada em conjunto. Como e quanto ao número de períodos a serem amostrados se a demanda for inerentemente estável, sugere-se valores baixos de e e valores mais altos de N se a demanda for inerentemente instável, valores altos e menores de N são sugeridos PRÉVIA DE FOCO quotfocus forecastingquot refere-se a Uma abordagem para a previsão que desenvolve as previsões por várias técnicas, em seguida, escolhe a previsão que foi produzido pelo quotbestquot destas técnicas, onde quotbestquot é determinada por alguma medida de erro de previsão. FOCO DE PREVISÃO: EXEMPLO Para os primeiros seis meses do ano, a demanda por um item de varejo foi de 15, 14, 15, 17, 19 e 18 unidades. Um varejista usa um sistema de previsão de foco baseado em duas técnicas de previsão: uma média móvel de dois períodos e um modelo de suavização exponencial ajustado à tendência com 0,1 e 0,1. Com o modelo exponencial, a previsão para janeiro foi de 15 ea média tendencial no final de dezembro foi de 1. O varejista usa o desvio absoluto médio (MAD) nos últimos três meses como critério para escolher qual modelo será usado para prever Para o próximo mês. uma. Qual será a previsão para julho e qual modelo será usado b. Você responderia à Parte a. Ser diferente se a demanda para maio tivesse sido 14 em vez de 19ABC Floral Solution - para baixo. Qual das opções acima. BullCalcule uma previsão da demanda acima usando uma média móvel de 3 e 5 períodos. Dia Demanda 3-período mov. Média de 5 períodos mov. Média. 1 200 2 134 3 157 4 165 163,67 5 177 152,00 6 125 166,33 166,60 7 146 155,67 151,60 8 150 149,33 154,00 9 182 140,33 152,60 10 197 159,33 156,00 11 136 176,33 160,00 12 163 171,67 162,20 13 157 165,33 165,60 14 169 152,00 167,00 15 163,00 164.40 bullGraph estas previsões e os dados originais usando Excel. O que o gráfico mostra Graph mostra que a demanda foi inferior a 3 período, bem como 5 período média móvel. Agora, a demanda acabou de atravessar período 3 e média 5 período móvel ea demanda está em alta tendência. Mas a média móvel de período mais longo (MA de 5 períodos) está acima de uma média móvel de período mais curto (MA de 3 períodos). Assim, tendência de longo prazo é Este é o fim da pré-visualização. Inscreva-se para acessar o restante do documento. Pré-visualização de texto não formatado: para baixo. Qual das previsões acima é melhor Por que Para identificar a tendência de longo prazo, a média móvel de longo prazo é preferida e para identificar a tendência de curto prazo, MA de curto prazo é preferida. Aqui, a previsão MA 5-período é melhor, uma vez que dá uma imagem mais clara da tendência. 2 4 6 8 10 12 14 16 0,00 50,00 100,00 150,00 200,00 250,00 Demanda de Pedido de Gerânio Movimento de 3 períodos. Média de 5 períodos mov. Média. Demanda do dia e previsões. Ver documento completo Clique para editar o documento detailsOR-Notes OR-Notes são uma série de notas introdutórias sobre tópicos que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram originalmente usados ​​por mim em um curso introdutório OR eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudantes e professores interessados ​​em OU sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis em OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 Exame UG A procura por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique a suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual destas duas previsões você prefere e porquê? A média móvel para os meses dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9 obtemos: Antes da previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, verificamos que para a média móvel MSD (15-19) sup2 (18-23) sup2 (21-24) sup2 / 3 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13-17) ) Sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 / 4 10.44 Em geral, vemos que a suavização exponencial parece dar as melhores previsões de um mês de antecedência, uma vez que tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão 1994 UG exam A tabela abaixo mostra a demanda por um novo aftershave em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria sua previsão para a demanda no mês oito Aplicar suavização exponencial com uma constante de suavização de 0,1 para derivar uma previsão para a demanda no mês oito. Qual das duas previsões para o mês oito você prefere e por que? O detentor de loja acredita que os clientes estão mudando para este novo pós-barba de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. Solução A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel para o mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando suavização exponencial com uma constante de suavização de 0,1 Nós começamos: Como antes da previsão para o mês oito é apenas a média para o mês 7 M 7 31,11 31 (como não podemos ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1 Overall, então vemos que a média móvel de dois meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Assim, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança precisamos usar um modelo de processo de Markov, onde marcas de estados e nós precisariamos de informações de estado iniciais e probabilidades de troca de clientes (de pesquisas). Teríamos de executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 UG exame A tabela abaixo mostra a demanda por uma determinada marca de barbear em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses para os meses três a nove. Qual seria sua previsão para a demanda no mês dez Aplicar suavização exponencial com uma constante de suavização de 0,3 para derivar uma previsão para a demanda no mês dez. A média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 9 M 9 20,33. Portanto, como não podemos ter uma demanda fracionária, a previsão para o mês 10 é 20. Aplicando a suavização exponencial com uma constante de suavização de 0,3 obtemos: Como antes a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3 geral, vemos que a média móvel de três meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Por isso preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão 1991 UG exame A tabela abaixo mostra a demanda por uma determinada marca de fax em uma loja de departamentos em cada um dos últimos doze meses. Calcular a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,2 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 O que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda do aparelho de fax no mês 13. Solução A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 ( 37 33 32 30) / 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 A previsão para o mês 13 é apenas o movimento Média do mês anterior, ou seja, a média móvel para o mês 12 m 12 46,25. A previsão para o mês 13 é 46. Aplicando a suavização exponencial com uma constante de suavização de 0.2 obtemos: Como antes a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós não podemos ter a demanda fracionária) Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0.2 Overall, vemos que a média móvel de quatro meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Por isso preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demanda sazonal mudanças de preços de publicidade, tanto esta marca e outras marcas situação económica geral nova tecnologia Exemplo de previsão 1989 UG exame A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,7 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e porquê Solução Agora não podemos calcular um Média móvel de seis meses até termos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por conseguinte, temos: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 A previsão para o mês 13 É apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 12 m 12 38,17. Portanto, como não podemos ter demanda fracionária, a previsão para o mês 13 é de 38. Aplicando-se a suavização exponencial com uma constante de suavização de 0,7 obtemos:

Comments

Popular posts from this blog

Troca forex ne demek

Trading strategies intraday

Urban forex blog